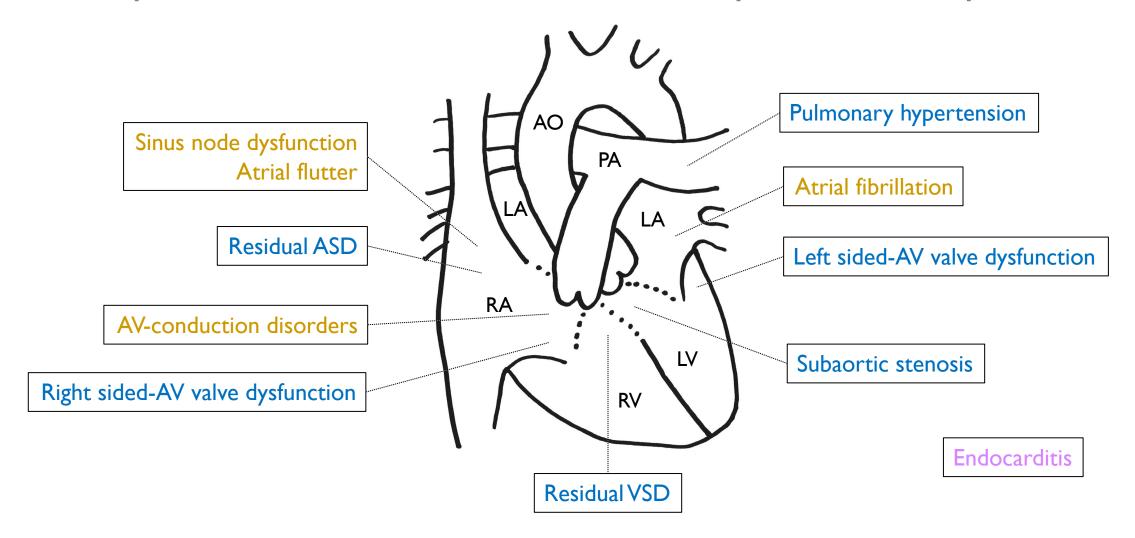


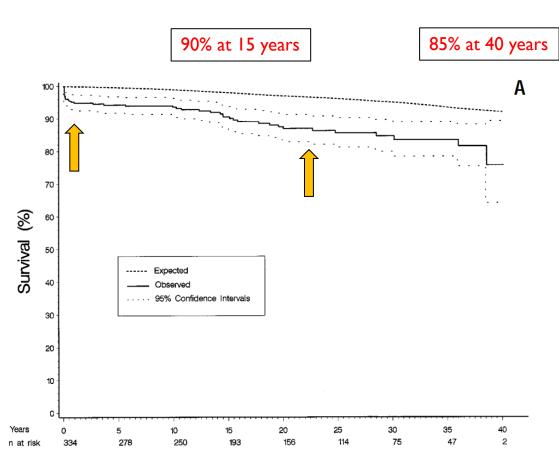
Long term outcome after AVSD repair

Werner Budts MD, PhD
Congenital and Structural Cardiology UZ Leuven
Department of Cardiovascular Sciences KU Leuven

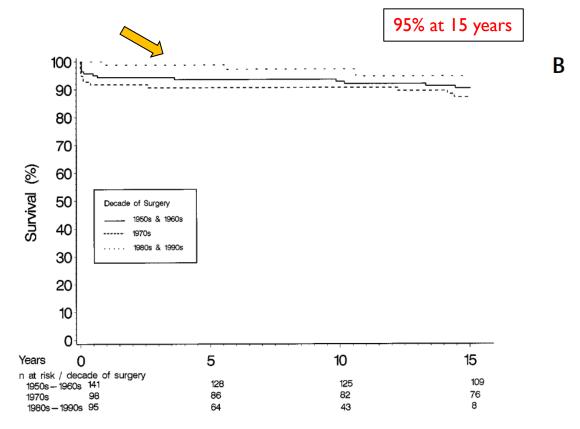
Conflict of interest

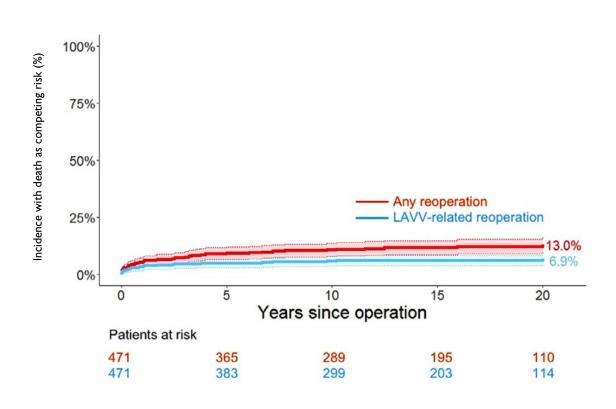

Adult congenital cardiologist

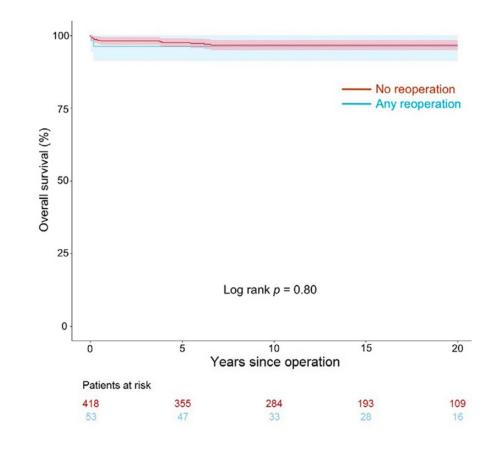
 Facing the results of the therapeutic decisions by pediatric cardiologists and congenital cardiac surgeons


Sequellae late after atrioventricular septal defect repair

Survival and decades of surgery




Fig 1. Kaplan-Meier curve represents overall survival (A) and by the decade of the operation (B) in this cohort of patients.

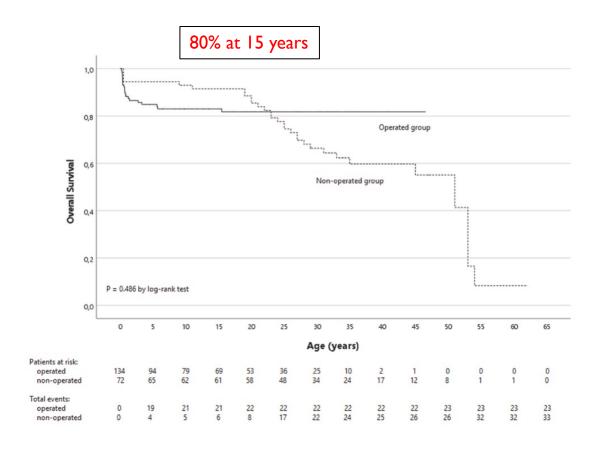


Re-operation and impact on survival

No significant impact on mortality (perioperative † 3.8%, late † 0%)

Risk factors of overall re-operation

	Characteristic	UnivariableHR (95% CI)	P value	MultivariableHR (95% CI)	P value
	AVSD subtypes				
	pAVSD	1			
	tAVSD	5.15 (1.72-15.4)	0.003		
	cAVSD	1.96 (0.69-5.55)	0.206		
	Age at primary repair (y)	0.99 (0.98-1.01)	0.276		
	Weight at primary repair (kg)	0.98 (0.94-1.02)	0.367		
	Female gender	0.93 (0.54-1.60)	0.797		
	Trisomy 21	0.39 (0.22-0.67)	0.001	0.51 (0.29-0.90)	0.019
,	Associated cardiac malformations	1.78 (1.00-3.14)	0.049		
	Coarctation	1.79 (0.44-7.36)	0.421		
	Tetralogy of Fallot	5.15 (1.59-16.7)	0.006	6.13 (1.86-20.2)	0.003
	Prior cardiac/palliative surgery	2.06 (0.74-5.70)	0.166		
	Double orifice LAVV	1.05 (0.25-4.31)	0.950		
	Incomplete commissures	3.00 (1.56-5.77)	0.001		
	Extra cleft	1.63 (0.73-3.62)	0.230		
	LV single papillary muscle head	3.29 (1.40-7.69)	0.006		
	Unbalanced AV-valves/ventricles	5.24 (2.36-11.6)	< 0.001	5.24 (2.30-11.9)	< 0.001
•	Incomplete cleft closure	2.43 (1.28-4.63)	0.007		
	Residual mitral regurgitation				
	None/mild	1			
	Moderate	3.65 (1.76-7.59)	0.001	2.88 (1.37-6.05)	0.005
	Severe	69.4 (24.5-197)	< 0.001	40.7 (14.9-111)	< 0.001


AVSD, atrioventricular septal defect; AV, atrioventricular; CI, confidence interval; HR, hazard ratio; LAVV, left atrioventricular valve; LV, left ventricle; p/t/cAVSD, partial/transitional/complete atrioventricular septal defect.

Values were expressed as number and percentage (%) or as mean \pm standard deviation.

Survival and re-operation in Down syndrome

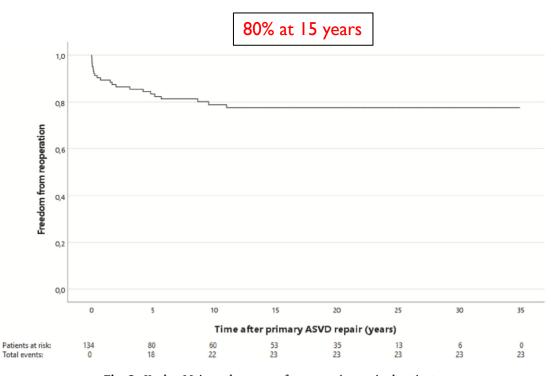


Fig. 2. Kaplan Meier redo surgery free curve in repaired patients.

Re-operations and findings on the left-sided AV-valve

50% of re-operation at left sided AV-valve

30% of re-operation at left sided Av-valve

Table 2. Indications for First Reoperation After Primary Repair for AVSD **tAVSD** cAVSD Total Indication for Reoperation pAVSD Number of primary repairs 78 (16.6) 88 (18.7) 305 (64.8) 471 (100)* LAVV pathology 2 (2.6) 9 (10.2) 17 (5.6) 28 (5.9) **LVOTO** 16 (3.4) 1 (1.3) 6 (6.8) 9 (3.0) 1 (1.3) 2 (2.3) 4 (1.3) 7 (1.5) Residual shunt Pacemaker implantation 0 (0) 2 (0.4) 0 (0) 2 (0.7) Total 4 (5.1) 17 (19.3) 32 (10.5) 53 (11.1)

LAW, left atrioventricular valve; LVOTO, left ventricle outflow tract obstruction; p/t/cAVSD, partial/transitional/complete atrioventricular septal defect.

Values presented as number and (%).

Findings on left AV-valve

Table 4. Perioperative Findings in LAVV at		
Pathology*	n	%
Repair dehiscence	15	58
Residual cleft	7	27
Dysplastic leaflet tissue	7	27
Stenosis after prior repair	4	15
Abnormal leaflet pliability	3	12
Leaflet perforation	3	12
Leaflet prolapse-tethering	2	7
Double orifice	2	7
Deficient mural leaflet	1	4
Additional cleft (previously unrepaired)	1	4
Septation patch dehiscence	1	4
Myxomatous leaflet tissue	1	4
Chordal rupture	1	4

LAVV, left atrioventricular valve.

*More than one pathologic finding may have been present in any given patient.

^{*}Six patients were lost to follow-up (2 with pAVSD and 4 with cAVSD).

Re-operation for left or right atrioventricular valve

Table 3
First reoperations performed in the total study population

Re-operation at median 7 years; range 1 month - 71 years

Reoperation	PAVSD n=31 (%)	CAVSD n=28 (%)	Total n=59 (%)	<i>P</i> -value
Repair of the LAVV	22 (71)	23 (82)	45 (76)	0.31
Cleft closure	21 (68)	23 (82)	44 (75)	0.21
Commissuroplasty	9 (29)	10 (36)	19 (32)	0.58
Annuloplasty	2 (6)	0 (0)	2 (3)	0.49
Mechanical valve replacement of the LAVV	6 (19)	2 (7)	8 (14)	0.26
Residual ASD repair	3 (10)	0 (0)	3 (5)	0.24
Enucleation of LVOT obstruction	0 (0)	3 (11)	3 (5)	0.10
Additional corrections				
Repair of the RAVV	5 (16)	5 (18)	10 (17)	0.86
Cleft closure	0 (0)	3 (11)	3 (5)	0.10
Commissuroplasty	4 (13)	3 (11)	7 (12)	1.0
Annuloplasty	1 (3)	0 (0)	1 (2)	1.0
Residual VSD repair	2 (6)	5 (18)	7 (12)	0.24
Residual ASD repair	9 (29)	3 (11)	12 (20)	0.10
Enucleation of LVOT obstruction	0 (0)	1 (4)	1 (2)	0.22
Mechanical aortic valve replacement	1 (3)	0 (0)	1 (2)	1.0

PAVSD, partial atrioventricular septal defect; CAVSD, complete atrioventricular septal defect; LAVV, left atrioventricular valve; RAVV, right atrioventricular valve; VSD, ventricular septal defect; ASD, atrial septal defect; LVOT, left ventricular outflow tract.

Replacement or repair of the left AV-valve?

Risk for re-re-operation

Table 1
Incidence of left AV valve anomalies and results of valve reconstruction

Anomalies	Left AV valve incompetence after reoperation (grade)					
	0	I	II	III		
(No. of patients)	(n = 13)	(n = 5)	(n=4)	(n=6)		
Dysplastic valvular tissue	1	1 (1)		3ª \		
Fibrotic deformity of septal leaflet	1	2	2	3		
Posterior leaflet pro- lapse		1 (1)		1ª		
Parachute valve			2			
Severe deformity of the valve				1ª		
Double orifice valve	1		1	1 /		
Total	3	4	5	9		

^{(),} numbers in parenthesis indicate deceased patients.

Risk for pacemaker implantation

Prosthetic Valve Complications

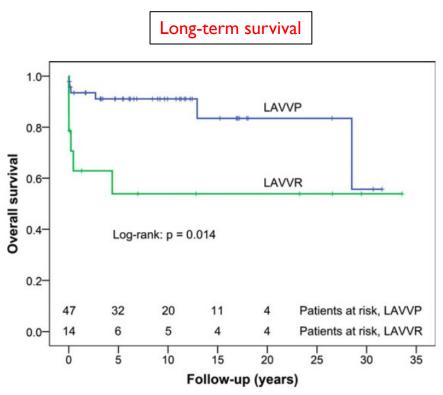
Overall, 61.2% of patients (19 of 31) were free of a prosthetic valve. There were no major bleeding or thromboembolic complications for patients who underwent prosthetic mitral valve replacement. Severe left ventricular systolic dysfunction developed in 3 patients with a prosthetic valve. One of these patients required heart transplantation owing to progression of cardiomyopathy.

Need for Pacemaker Implantation

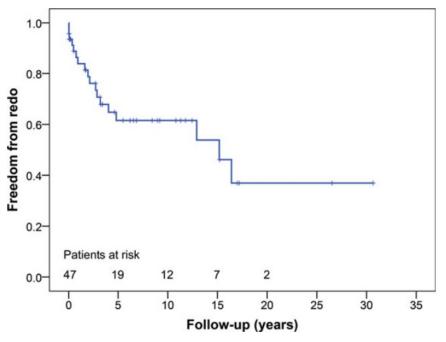
Pacemaker placement was required in 8 patients (25%). In this series, patients who underwent valve replacement had a significantly higher incidence of pacemaker insertion than did patients who underwent valve repair (62.5% versus 13.0%, p = 0.005).

Durability of Left Atrioventricular Valve Repair

At follow-up, 71.4% of operative survivors of valve repair (15 of 21) were free of prosthetic valve replacement. The median time to valve replacement after recurrent LAVVR was 3.3 years. Those with a durable repair had mild or less LAVVR in 93.3% (14 of 15) at recent echocardiography. The remaining patient had moderate LAVVR, was stable on serial echocardiograms, and was clinically asymptomatic.


Analysis of fastors impasting durability of value rangin

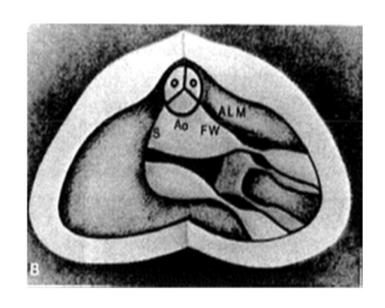
^a Subsequent left AV valve replacement performed.



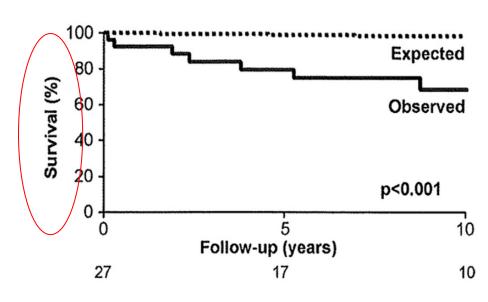
Mechanical valve or repair of the left AV-valve?

Figure 1: Overall survival after reoperation for LAVV pathology at the first reoperation (n = 61). LAVV: left atrioventricular valve; LAVVP: left atrioventricular valve replacement.

Figure 4: Durability of LAVVP at the first reoperation (n = 47). LAVVP: left atrioventricular valvuloplasty.


When to intervene on the left AV-valve?

AV valve regurgitation		
Valve surgery, preferably AV valve repair, is recommended in symptomatic patients with moderate to severe AV valve regurgitation and should be performed by a congenital cardiac surgeon.	•	С
In asymptomatic patients with severe left-sided AV valve regurgitation, valve surgery is recommended when LVESD >45 mm ^d and/or LVEF <60% provided other causes of LV dysfunction are excluded.	•	С
In asymptomatic patients with severe left-sided AV valve regurgitation, preserved LV function (LVESD <45 mm ^d and/or LVEF >60%), high likelihood of successful valve repair, and low surgical risk, intervention should be considered when atrial fibrillation or systolic PAP >50 mmHg is present.	lla	C


Re-operation for left ventricle outflow tract obstruction

Reoperation occurs at 5-7 years Reoperation free after 10 years: 95%

Predictors of LVOTO

- Displacement of the AV valve leaflet tips into the LV
- Presence of fixed or thick chords in the LVOT
- An acute aortoseptal angle
- High insertion of the anterolateral papillary muscle
- An abnormal aorta to subaortic ratio

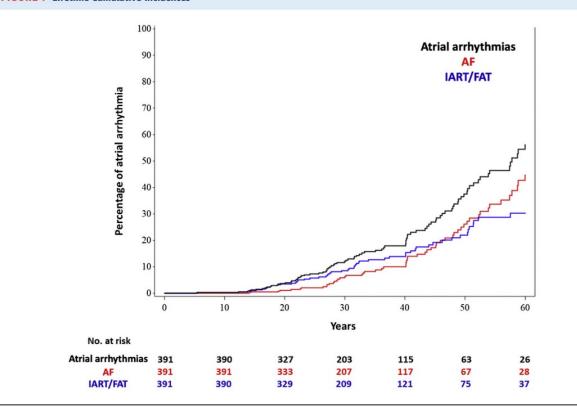
Figure 1 Actuarial survival after reoperation for LVOTO after repair of AVSD. A significant difference (P < .001) is observed as compare with age and gender matched population.

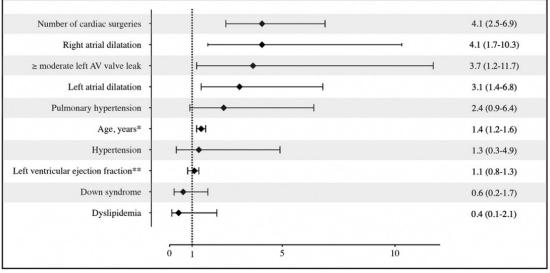
When to intervene on the LVOT?

Recommendations	Class ^a	Level ^b
In symptomatic patients (spontaneous or on exercise test) with a mean Doppler gradient \geq 40 mmHg ^c or severe AR, surgery is recommended.	1	С
 Asymptomatic patients should be considered for surgery when one or more of the following findings are present: Mean gradient <40 mmHg but LVEF <50%. AR is severe and LVESD >50 mm (or 25 mm/m² BSA) and/or EF <50%d. Mean Doppler gradient is ≥40 mmHgc and marked LVH present. Mean Doppler gradient is ≥40 mmHgc and there is a fall in blood pressure below baseline on exercise. 	lla	c

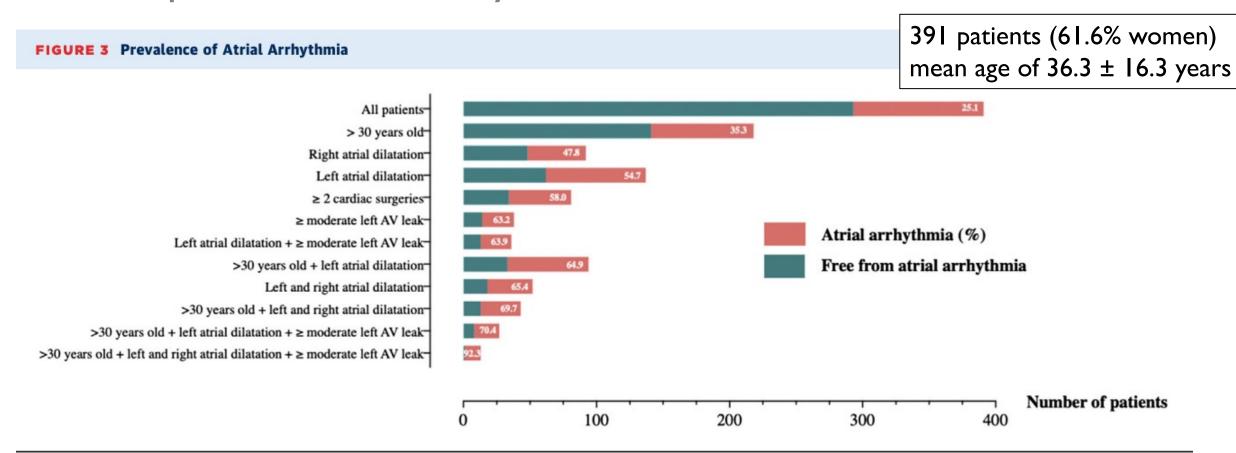
Asymptomatic patients may be considered for surgery when one or more of the following findings are present:

• Mean Doppler gradient is ≥40 mmHg,^c LV is normal (EF >50% and no LVH), exercise testing is normal, and surgical risk is low.


• Progression of AR is documented and AR becomes more than mild (to prevent further progression).


Supraventricular arrhythmia

Lifetime cumulative incidences of atrial arrhythmias, atrial fibrillation (AF), and intra-atrial re-entrant tachycardia/focal atrial tachycardia (IART/FAT)



Forest plot of factors associated with atrial arrhythmias in multivariate analysis. *By 5-year increments. **By 5% increment. AV = atrioventricular; CI = confidence interval.

Supraventricular arrhythmia and mechanical/functional data

Prevalence of atrial arrhythmia in different subgroups of patients. Abbreviation as in Figure 2.

Ventricular arrhythmia

c AVSD: N = 238

pAVSD: N = 177

mean follow-up duration of 9 years

(range: <30 days - 47 years)

Table 2Early and late post-operative arrhythmias.

		cAVSD (n = 23)		pAVSD ($n=25$)	
		DS $(n = 18)$	NS (n=5)	$\overline{DS (n=3)}$	NS $(n = 22)$
Overall post-operative arrhythmias	SVT $(n = 48)$	18	5	3	22
	VT/VF $(n = 6) < 1.0\%$	2	1	0	3
Early post-operative arrhythmias	SVT $(n = 33)$	16 (88,9%)	4 (80%)	3 (100%)	10 (45,5%)
Late post-operative arrhythmias	SVT $(n = 15)$	2 (11,1%)	1 (20%)	0 (0%)	12 (54,5%)

cAVSD = Complete atrioventricular septal defect, DS = Down syndrome, NS = Non-syndromic, pAVSD = Partial atrioventricular septal defect, SVT = Supraventricular tachycardia, VF = Ventricular fibrillation, VT = Ventricular tachycardia.

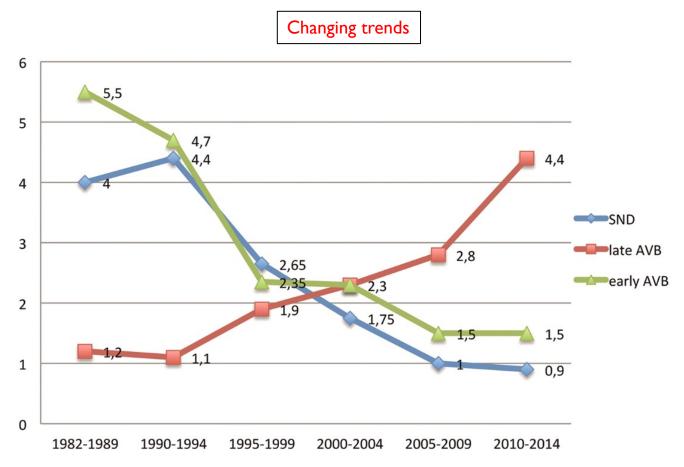

Sinus node dysfunction and atrio-ventricular block

Table 1 Characteristics of patients with partial and complete AVSD undergoing PM implantation

	Partial AVSD (n=17)	Complete AVSD (n=21)	p
Male gender	10 (59)	9 (43)	0.32 ^a
Age at first surgery (years)	ergery (years) 4.1 ± 7.9 2.7 ± 3.9		0.5^{b}
Down syndrome	7 (41)	13 (62)	0.2^{a}
Age at PM implantation (years)	7.0 ± 8.6	8.9 ± 8.3	0.5^{b}
Early AVB	7 (41)	7 (33) 2,4%	0.62^{a}
Late AVB	8 (47)	4 (19) 1,4%	0.06^{a}
Late SND	1 (6)	9 (43) 3,1%	0.01^{a}
Timing of AVB onset (years)	4.3 ± 3.5	6.6 ± 7.2	0.45^{b}
Timing of SND onset (years)	2 ± 0	10.6 ± 6	0.22^{b}
Mortality	2 (12)	2 (9.5)	0.55^{a}

Values are expressed as number (%) or mean ± SD

AVB atrioventricular block, AVSD atrioventricular septal defect, SND sinus node dysfunction, PM pacemaker

^aChi-square test

^bIndependent *t* test

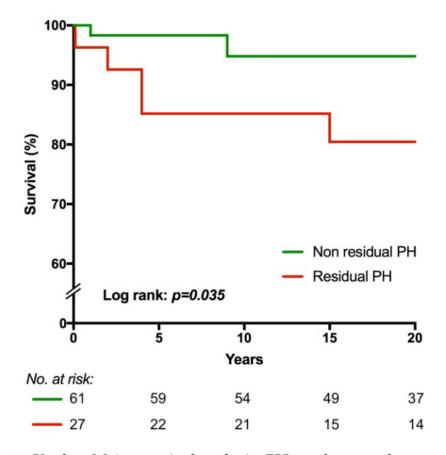
Residual pulmonary hypertension

Variable	No. of Patients	All, n = 88	Non-Residual PH after Surgical Correction, <i>n</i> = 61 (69.3%)	Residual PH after Surgical Correction, n = 27 (30.7%)	<i>p</i> -Value
Female sex, n (%)	88	44 (50.0)	33 (54.1)	11 (40.7)	0.248
Age at diagnosis (RHC) (years)	88	0.84 (0.61–3.03)	0.84 (0.60–3.60)	0.84 (0.62–2.00)	0.469
Diagnosis, n (%)	88				
ASD		3 (3.4)	3 (4.9)	0 (0)	0.550
APVD		1 (1.1)	1 (1.6)	0 (0)	1.000
PDA		6 (6.8)	5 (8.2)	1 (3.7)	0.662
VSD		26 (29.5)	17 (27.9)	9 (33.3)	0.605
Combined		24 (27.2)	12 (19.6)	12 (44.4)	0.016
TF		3 (3.4)	3 (4.9)	0 (0)	0.550
CAVSD		14 (15.9)	11 (18.0)	3 (11.1)	0.536
TGA		3 (3.4)	3 (4.9)	0 (0)	0.550
TA		1 (1.1)	1 (1.6)	0 (0)	1.000
Other complex defects		7 (8.0)	5 (8.2)	2 (7.4)	1.000

All preop PH

Redo cath after 10 years

AVSD: 3/14 21%


Residual pulmonary hypertension

Pulmonary arterial hypertension (shunt)
Postcapillary pulmonary hypertension (left heart)

Prevalence in AVSD population at late follow-up: ? %

Prevalence in Down patients: 11.7%

- Echocardiographic diagnosis
- Median follow-up time: 19 years

Figure 2. Kaplan–Meier survival analysis. PH—pulmonary hypertension.

Endocarditis

Table 2.—Annualized Risk of Endocarditis Within This Population

Risk for Endocarditis	No. of Cases per 1000 Patient-Years
High	
Pulmonary atresia with ventricular septal defect	11.5
Tetralogy of Fallot with palliative systemic-to-pulmonary shunt	8.2
Aortic valve stenosis*	7.2
Pulmonary atresia*	6.4
Unoperated ventricular septal defect	3.8
Moderate to low Primum atrial septal defect with cleft mitral valve*	1.8
Coarctation of the aorta*	1.2
Complete atrioventricular septal defect*	1.0
Tetralogy of Fallot*	0.7
Dextrotransposition of the great arteries*	0.7
Ventricular septal defect*†	0.6
No documented risk Atrial septal defect*	0
Patent ductus arteriosus*	0
Pulmonic stenosis*	0

^{*}After definitive surgical repair. For pulmonary atresia, this represents establishment of right ventricle to pulmonary artery continuity.

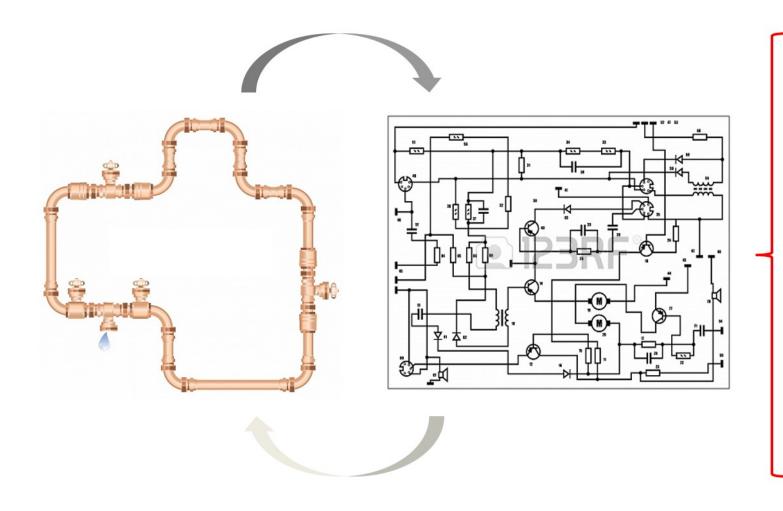
[†]All cases of endocarditis occurred either with a residual ventricular septal defect or with associated aortic valve anomalies including bicuspid aortic valve and aortic insufficiency. No cases of endocarditis occurred with closed ventricular septal defect in the absence of other anomalies.

Endocarditis

Table 2. Primary CHD lesion in patients with infective endocarditis

Diagnosis	n	%	Adult	Child	Infant
Tetralogy of Fallot*	150	22.8%	84	56	10
VSD	129	19.6%	76	46	7
Bicuspid aortic valve	70	10.7%	59	11	0
Aortic valve disease (AS / AR)	57	8.7%	46	11	0
Discordant VA connections (TGA)	42	6.4%	20	16	6
Coarctation of the aorta	33	5.2%	26	6	1
Mitral valve anomaly	31	4.7%	22	8	1
Common arterial trunk	31	4.7%	7	21	3
AVSD	25	3.8%	6	11	8
ASD**	18	2.7%	8	5	5
Hypoplastic left heart syndrome	14	2.1%	0	3	11
Pulmonary valve anomaly	14	2.1%	13	0	1
Congenitally corrected TGA	9	1.4%	7	2	0
Tricuspid valve anomaly	7	1.1%	6	1	0
PDA	7	1.1%	7	1	0
Functionally UVH***	6	0.9%	5	1	0
Other ****	14	2.1%	7	5	2
Unknown	79	10.7%	36	31	10

Table 5. Risk factors for inpatient mortality on univariate and multivariable analysis (Cox-regression analysis)



Factor	Univariate ana	lysis	Multivariable	analysis	
	HR (95% CI)	Р	HR (95% CI)	Р	
CHD diagnosis					
Tetralogy of Fallot	0.58 (0.26–1.3)	.19			
VSD	0.96 (0.45–2.1)	.92			
Bicuspid aortic valve	0.19 (0.026–1.4)	.1			
TGA	1.1 (0.33–3.4)	.91			
Coarctation of the	0.45 (0.061–3.2)	.42			
Mitral valve anomaly	0.85 (0.21–3.5)	.82			
Common arterial trunk AVSD	1.9 (0.58–6) 3.2 (1.4–7.7)	.3 .0083**	3.0 (1.2–7.6)	0.017*	
ASD	0.98 (0.13–7.1)	.98	(1.2-7.0)		
HLHS	3.9 (1.2–13)	.024*	3.2 (0.81–12.6)	0.096	
Pulmonary valve anomaly	1.3 (0.1 <i>7</i> –9.2)	.81	(0.0.1 12.0)		
Congenitally corrected TGA	2 (0.28–15)	.48			
Tricuspid valve anomaly	2.3 (0.32–17)	.4			
Functionally UVH	0.56 (0.24–13)	.58			
PDA	3.6 (0.5–27)	.2			

Other issues addressed by individual approach

Sequellae Residual lesions

Heart failure Arrhythmias

Contraception Heredity Pregnancy

Sportmedical issues Sociolegal issues Vocational issues

...

Conclusions

- Overall long term outcome is good after AVSD repair.
- Re-interventions mainly focus on the left-sided AV-valve.
- There is an increased prevalence of supraventricular arrhythmias, especially among older individuals.
- Long-term considerations include the need for pacemaker implantation due to atrioventricular block
- Although patients with Down syndrome may display some differences, the overall prognosis is favorable.